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CuI-catalyzed reaction of 1-(2-bromophenyl)-propargylamines 4 with b-keto esters in i-PrOH/H2O (3:1)
at 50 �C provides polysubstituted 1,2-dihydroisoquinolines. The transformation involves a cascade inter-
molecular C–C bond formation and intramolecular condensation process.

� 2009 Elsevier Ltd. All rights reserved.
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Scheme 1.
The 1,2-dihydroisoquinoline skeleton is an integral part of
many naturally occurring substances and pharmaceutically impor-
tant compounds.1 The development of its facile synthesis has been
an important issue.1 Generally, addition of nucleophiles to acti-
vated isoquinolinium salts is a reliable method for the synthesis
of 1,2-disubstituted dihydroisoquinolines.2,3 Both acyl chlorides
and chloroformates could be used for activation of isoquinolines.
But for diversity-orientated synthesis, a drawback behind this
method is that the source of substituted isoquinolines is limited.
In 2005, Asao and coworkers reported the AgOTf-catalyzed synthe-
sis of 1,2-dihydro-isoquinolines by a direct addition of nucleo-
philes to o-alkynylaryl aldimines.4 Subsequently, different Lewis
acid and nucleophiles were examined and they were found to give
a great diversity of 1,2-dihydroisoquinolines.5 Further investiga-
tions indicated that a straight three-component reaction of 2-alky-
nylbenaldehyde, amine, and nucleophiles could take place under
the catalysis of Lewis acids,6 thereby providing a convenient meth-
od for assembly of 1,2-dihydroisoquinolines.

Recently, we have revealed that some amino acids could pro-
mote typical Ullmann-type reactions, leading to these coupling
reactions occurring under mild conditions.7 For example, CuI/L-
proline-catalyzed coupling of aryl halides and activated methylene
compounds could occur at rt to 50 �C.8 Taking this advantage we
have developed some cascade processes for elaboration of hetero-
cycles, which include benzofurans,9 benzimidazoles,10 benzimid-
azole-2-ones,11 substituted indoles,12 and substituted
isoquinolines.13,14 As an extension of this work, in this Letter, we
explore the possibility of using the coupling reaction of substituted
o-bromobenzylamines 4 with b-keto esters 5 and subsequent
intramolecular condensation to elaborate polysubstituted 1,2-
dihydroiso-quinolines 7 (Scheme 1). Herein, we wish to discuss
our results.
ll rights reserved.
As outlined in Scheme 1, the required substituted o-bromoben-
zylamines 4 could be assembled via a known three-component
reaction of 2-bromobenzaldehydes, 1-alkynes, and primary
amines.15 Since this is another copper(I)-catalyzed reaction, we ini-
tially tried adding b-keto esters and ligands to this reaction system
in order to develop a four-component reaction to polysubstituted
1,2-dihydroiso-quinolines. Unfortunately, we failed to obtain the
desired products in reasonable yields under various conditions.
Therefore, a stepwise manner was examined.

To explore the optimized reaction conditions, coupling of 4a
with methyl acetoacetate was selected as a model reaction. It
was found that this reaction occurred at room temperature under
the action of 10 mol % CuI, 20 mol % L-proline and K2CO3 in i-PrOH
to give 1,2-dihydro-isoquinoline 7a (Table 1, entry 1). However,
the combined yield was low mainly because of poor conversion.
Increasing reaction temperature to 50 �C gave a similar result (en-
try 2). After some experimentation, we were pleased to find that
adding some water could improve the yield greatly (entry 3),
although the reason is not clear. In this case the amino acid was



Table 1
Modifications of reaction conditions for the CuI-catalyzed cascade processa

7a

N

Ph

Me
CO2Me

Br

4a

H
N

Ph

conditions
CH3COCH2CO2CH3

Entry Base Solvent Yield of 7ab (%)

1 K2CO3 i-PrOH 22
2c K2CO3 i-PrOH 25
3 K2CO3 i-PrOH/H2O (3:1) 63
4d K2CO3 i-PrOH/H2O (3:1) 66
5d K2CO3 i-PrOH/H2O (1:1) 38
6d K2CO3 i-PrOH/H2O (6:1) 42
7d Cs2CO3 i-PrOH/H2O (3:1) 53
8d K3PO4 i-PrOH/H2O (3:1) 45
9d Na2CO3 i-PrOH/H2O (3:1) Trace
10c,d K2CO3 i-PrOH/H2O (3:1) 66

a Reaction conditions: 4a (0.5 mmol), methyl acetoacetate (1.0 mmol), CuI
(0.05 mmol), L-proline (0.1 mmol, for entries 1–3), base (1.5 mmol), solvent
(2.4 mL), rt, 24 h.

b Isolated yield.
c 50 �C, 12 h.
d

L-Proline was not used.
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found unimportant as evident from that a similar result was ob-
tained in the absence of L-proline (entry 4). Probably b-keto ester
itself may serve as a promoter for this transformation.

Further investigation revealed that the ratio for water and i-
PrOH could influence the reaction process because either more or
less than 1:3 of H2O/i-PrOH gave poor yields (entries 5 and 6).
Switching base from K2CO3 to Cs2CO3, K3PO4, or Na2CO3 also pro-
vided 7a with relatively low yields (entries 7–9), indicating that
the base played an important role for this reaction. Moreover, heat-
ing the reaction mixture was found to be able to shorten the reac-
tion time although the reaction yield was not improved (entry 10).
Accordingly, we carried out the reaction at 50 �C in the subsequent
studies.
Table 2
Synthesis of polysubstituted 1,2-dihydroisoquinolines via a CuI-catalyzed cascade process

X

Y

Br

4

H
N

R

R'

R"COCH2CO2R'" (5)+
1

i-P

Entry X Y R R0

1 H OMe Allyl C6H
2 Me H Allyl C6H
3 H H Allyl 4-M
4 H H Allyl 4-M
5 H OMe Allyl 4-M
6 Me H Allyl 4-M
7 H H n-Bu C6H
8 H H n-Bu 4-M
9 H H C3H6OTBS C6H

10 H H Bn C6H
11 H H Allyl 4-M
12 H OMe Allyl C6H
13 H H Allyl C6H
14 H H Allyl C6H

a Reaction conditions: 4 (0.5 mmol), b-keto ester (1.0 mmol), CuI (0.05 mmol), K2CO3
b Isolated yield.
The optimized reaction conditions16 were tested by varying o-
bromobenzylamines and b-keto esters and the results are summa-
rized in Table 2. Two substituted o-bromobenzylamines worked
well to give 7b and 7c in good yields (entries 1 and 2), indicating
that variation at the aromatic ring is possible. Changing substitu-
ents of alkyne moiety had little influence to the reaction process,
as evident from that 1,2-dihydroisoquinolines 7d–g were obtained
in 52–74% yields (entries 3–6). Next, we explored the possibility to
vary the N-substituents, and were pleased to observe that several
other alkyl groups are suitable for this process (entries 7–10).
However, switching methyl acetoacetate to methyl 3-oxohept-6-
enoate gave the corresponding products 7k–n with considerable
lower yields (entries 11–13). In case of ethyl 3-oxo-3-phenylpro-
panoate as a substrate, no desired product was isolated (entry
14). These results could be rationalized by steric effect of the b-
keto esters.

In conclusion, we have developed a cascade coupling/condensa-
tion process to polysubstituted 1,2-dihydroisoquinolines. The
starting material could be easily assembled via a CuI-catalyzed
three-component reaction of 2-bromobenzaldehydes, 1-alkynes,
and primary amines. This advantage allows elaboration of func-
tionalized 1,2-dihydroisoquinolines in a convenient manner.
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